
Learning to Program with Haiku

Lesson 12

Written by DarkWyrm

All material © 2010 DarkWyrm



C++ is the language in which most Haiku programs are written. It is an extension of the C language 
written by Dennis Ritchie at Bell labs in the 1970s. The language fundamentals that we have been 
learning are common to both languages, but from here on out we will be learning the parts of C++ that 
C cannot do. It is these parts that make it powerful, but to really grasp them well, we must change our 
perspective of writing code.

Object-Oriented Programming

The programs that we have been writing have been part of a paradigm called procedural programming, 
which is development that centers around individual function calls. This is fine for many purposes, but 
programming for the Haiku Graphical User Interface (GUI) goes beyond this to another paradigm 
called object-oriented programming.

The idea behind object-oriented programming is that an application consists of the interaction of 
objects to perform a task. Each object is a "black box" which has certain properties and ways of 
interacting with it while hiding how it actually works. All we know about the object is how to interact 
with it. A real life example would be a television: pushing buttons changes the channel, adjusts settings 
in the on-screen menu, adjusts the volume, and turns it on or off. We also know its size, color, and 
approximate weight, and unless you're a TV repairman, you probably don't know how it works or have 
access to its internal components.

A C++ object is very much like a television. It has functions, called methods, which provide a means 
to interact with it. It also has variables for holding data which are called properties. Not all of an 
object's methods and properties are necessarily accessible by outsiders.

Classes

Type definitions in C++ are called classes. Classes are defined with code very much like the data 
structures we learned about in the last lesson. Here is an example class definition for our television.

class Television
{
public: // All of these functions are accessible by anyone. Without the

// 'public' keyword, all of these would be strictly internal methods –
// the default access mode is private.

// This is the constructor function. More on this in a moment.
Television(void);

// This is the destructor function. More on this in a moment,
// too.
~Television(void);

void SetChannel(uint16 channel);
uint16 GetChannel(void);

void SetVolume(uint8 volume);
uint8 GetVolume(void);

void TogglePower(void);
bool IsTurnedOn(void);



private: // Everything below this word can't be touched by the outside world

int8 DetectActiveInput(void);
void ConnectToSignal(void);

uint16 fChannel;
uint8 fVolume;
bool fPowerState;

};

The code bears a striking resemblance to a struct definition. There are a lot more methods than 
properties and a couple of odd words – public and private. The bits closely related to the operation 
of the television, such as ConnectToSignal(), are in the private section of the class definition and 
can only be called by the Television class' other methods.

It might seem just a little strange that there are six methods devoted to settings and getting the value of 
the Television's properties. Wouldn't it be easier – and less work – to just make fChannel, fVolume, 
and fPowerState public? Yes, but it would make the code that works with it messier. Our objects 
should expose their internal workings only when absolutely necessary. This makes it possible to change 
how it operates internally without disturbing its interaction with the outside world. For example, if we 
decided to rename fPowerState to fIsTurnedOn, the name of the variable would need to be changed 
in a handful of places in the code. All of those places would be in the file which contains the code for 
the class' methods. However, if we had made fPowerState a public property, we would have to change 
every reference to it in the entire project. If your project is large, this is a lot more work. Hiding 
properties using methods is called data abstraction, a term commonly heard in C++.

Calling an object's methods requires you to have access to the object. The dot and arrow operators that 
we used to get to a structure's variables are used with classes to access its methods and properties.

int
main(void)
{

Television tv;

// Watching a TV that is turned off isn't much fun
if (!tv.IsTurnedOn())

tv.TogglePower();

// Watch the Channel 8 news :)
tv.SetChannel(8);

return 0;
}

The other oddballs in the class definition are the functions Television() and ~Television(). They 
don't have a return type – not even void! This is because they are special methods. Television is 
called the class' constructor, which is a method called whenever we create a Television object. 
~Television() is the class' destructor, which is called whenever we destroy a Television object. 
They are optional, but almost every class has a constructor and many have a destructor. They also play 
a key role when allocating and freeing objects. Speaking of which, let's look at the C++ way of using 
heap memory. We're going to need it very soon.



C++ Memory Allocation: new and delete

To create a new Television object, we don't call malloc(). In fact, you will hardly ever use it unless 
you are writing a program in C. Instead, we will be using new and delete, the C++ counterparts to 
malloc() and free(). It's best we look at how they are used in this code example.

int
main(void)
{

// Create a pointer to hold our TV and an object to go with it. Using new
// allocates enough memory to hold one Television object and then calls
// its constructor.
Television *tv = new Television();

// Like before, it works better when it is turned on
if (!tv->IsTurnedOn())

tv->TogglePower();

// The news on 8 is all bad. Maybe Phineas and Ferb is on?
tv->SetChannel(172);

// Free our TV. Right before its memory is freed, the destructor method for
// the Television class is called.
delete tv;

return 0;
}

It's much simpler to use new and delete for allocating memory on the heap. In fact, for objects, they 
are required. Other methods will cause an object's constructor and/or destructor to never be executed 
and lead to all kinds of ugly messes. new and delete can also be used for arrays of objects, as you can 
see in this code example.

int
main(void)
{

// Create an array of TVs. I guess we're going to open an appliance store,
// starting with 100 sets. We're going to need a little retail space. ;-)
Television *tvArray = new Television[100];

// Like before, it works better when it is turned on, but we'll turn just
// one on, seeing how they're all the same. ;-)
if (!tvArray[0].IsTurnedOn())

tvArray[0].TogglePower();

// We don't care what channel is on so long as we can't hear it.
tvArray[0].SetVolume(0);

// Free our TV. The brackets are needed when freeing an array we received
// from new. Leaving out the brackets will cause a memory leak because
// then only one of the objects will be freed instead of all of them.
delete [] tvArray;

return 0;
}



Construction and Destruction

The two special functions that we have seen in the definition for our Television class are part of the 
C++ language itself. The main job of a constructor function is to do whatever is necessary to initialize 
the object. When we allocate a struct, its variables contain random data. It's the same way with 
objects, but the constructor does the initialization for us.

A class has a default constructor if one is not declared in the class definition. The default constructor 
for an object takes no parameters and does nothing. Our Television class defines the default 
constructor, but this is not a requirement for a class. Doing so, however, replaces the one provided and 
does something. The constructor for a class can also take parameters, such as either of these 
possibilities or something else:

Television(const char *name);
Television(bool isHD);

The destructor for a class always looks the same: a tilde (~), the name of the class, and taking no 
parameters. It is provided if a destructor is not declared in a class' definition. Like the default 
constructor, it doesn't do anything. The main job for a destructor is to clean up before the object is 
actually freed. Most of the time, this means freeing heap memory that was allocated somewhere in the 
object's methods.

Assignment

Practice thinking about object-oriented programming by writing down what a sample class definition 
for the following objects might look like, including both methods and properties:

• Alarm clock
• Car
• Stove
• Washing machine


